

Welcome to PyMinimax’s documentation!

Package Status

[image: Documentation Status]
 [https://pyminimax.readthedocs.io/en/latest/?badge=latest][image: Continuous Integration]
 [https://github.com/beginnerSC/pyminimax/actions/workflows/test_pyminimax.yml][image: Coverage Status]
 [https://codecov.io/gh/beginnerSC/pyminimax][image: PyPI]
 [https://pypi.python.org/pypi/pyminimax/][image: Downloads]
 [https://pepy.tech/project/pyminimax?versions=0.1.0&versions=0.1.1&versions=0.1.2][image: License]
 [https://github.com/beginnerSC/pyminimax/blob/master/LICENSE]

PyMinimax is a Python implementation of Bien and Tibshirani’s paper “Hierarchical Clustering With Prototypes via Minimax Linkage”1.
This is an agglomerative hierarchical clustering algorithm available in the protoclust R package 2 but not currently in SciPy nor scikit-learn.
It has a great advantage over classical hierarchical clustering methods that in each cluster one prototype is selected from the original data. Thus the results are better interpretable.

PyMinimax has a SciPy-compatible API. Users who are familiar with the scipy.cluster.hierarchy [https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html] module will find it easy to use.

Table of Contents

	Quick Start
	Installation

	Usage

	Getting Prototypes

	See Also

	API Reference

Reference

	1

	J. Bien and R. Tibshirani. Hierarchical clustering with prototypes via minimax linkage. Journal of the American Statistical Association, 106(495), 2011, 1075-1084.

	2

	J. Bien and R. Tibshirani. Package ‘protoclust’, 2015.

Quick Start

Installation

The recommended way to install PyMinimax is using pip:

pip install pyminimax

Or if you have installed PyMinimax before, please update to the latest version:

pip install --upgrade pyminimax

PyMinimax runs on any platform with Python 3 and SciPy installed.

Usage

The most important function in PyMinimax is pyminimax.minimax, and by default its usage is the same as the hierarchical clustering methods in SciPy, say scipy.cluster.hierarchy.complete. Here we demonstrate with an example from the SciPy documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.complete.html]. First consider a dataset of \(n=12\) points:

[1]:

X = [[0, 0], [0, 1], [1, 0],
 [0, 4], [0, 3], [1, 4],
 [4, 0], [3, 0], [4, 1],
 [4, 4], [3, 4], [4, 3]]

x x x x
x x

x x
x x x x

The minimax function takes a flattened distance matrix of the data as an argument, which can be computed by scipy.spatial.distance.pdist. By default, the return value of minimax has the same format as that of scipy.cluster.hierarchy.linkage. This is an \((n-1)\) by 4 matrix keeping the clustering result, called the linkage matrix. A detailed explanation of its format can be found in the SciPy
documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html].

[2]:

from pyminimax import minimax
from scipy.spatial.distance import pdist

Z = minimax(pdist(X))
Z

[2]:

array([[0. , 1. , 1. , 2.],
 [2. , 12. , 1. , 3.],
 [3. , 4. , 1. , 2.],
 [6. , 7. , 1. , 2.],
 [5. , 14. , 1. , 3.],
 [8. , 15. , 1. , 3.],
 [9. , 10. , 1. , 2.],
 [11. , 18. , 1. , 3.],
 [13. , 16. , 3.16227766, 6.],
 [17. , 19. , 3.16227766, 6.],
 [20. , 21. , 5. , 12.]])

Given the linkage matrix, one can then utilize the methods in SciPy to present the clustering result in a more readable manner. Below are examples applying dendrogram and fcluster.

[3]:

from scipy.cluster.hierarchy import dendrogram
from matplotlib import pyplot as plt

fig = plt.figure(figsize=(10, 4))
dendrogram(Z)
plt.show()

[image: _images/quick_start_7_0.png]

[4]:

from scipy.cluster.hierarchy import fcluster

fcluster(Z, t=1.8, criterion='distance')

[4]:

array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

The above result says that, cutting the dendrogram at 1.8 threshold, the data has 4 clusters, with the first 3 points being in the first cluster, and the following 3 in the second cluster, and so on.

Getting Prototypes

A unique advantage of minimax-linkage hierarchical clustering is that in each cluster one prototype is selected from the original data. Thus the resulting clusters are better interpretable. Starting 0.1.0, PyMinimax can also compute those prototypes. Below we demonstrate how this can be done.

To obtain the prototypes, first we need an extended linkage matrix that contains prototypes information. This is an \((n-1)\) by \(5\) matrix, where the first 4 columns are in the same format as the standard linkage matrix and the 5th column keeps the indices of the prototypes of each merged cluster. The extended linkage matrix can be computed by pyminimax.minimax with return_prototype=True.

[5]:

Z_ext = minimax(pdist(X), return_prototype=True)
Z_ext

[5]:

array([[0. , 1. , 1. , 2. , 0.],
 [2. , 12. , 1. , 3. , 0.],
 [3. , 4. , 1. , 2. , 3.],
 [6. , 7. , 1. , 2. , 6.],
 [5. , 14. , 1. , 3. , 3.],
 [8. , 15. , 1. , 3. , 6.],
 [9. , 10. , 1. , 2. , 9.],
 [11. , 18. , 1. , 3. , 9.],
 [13. , 16. , 3.16227766, 6. , 1.],
 [17. , 19. , 3.16227766, 6. , 8.],
 [20. , 21. , 5. , 12. , 1.]])

The 5-column extended linkage matrix is no longer SciPy-compatible. Any SciPy function that takes a linkage matrix will only work if we slice the extended linkage matrix to drop the 5th column, hence the Z_ext[:, :4] below.

[6]:

fig = plt.figure(figsize=(10, 4))
dendrogram(Z_ext[:, :4])
plt.show()

[image: _images/quick_start_13_0.png]

In PyMinimax, the prototypes are computed by pyminimax.fcluster_prototype. Its usage is exactly the same as scipy.cluster.hierarchy.fcluster, except

	it takes the 5-column extended linkage matrix instead of a standard 4-column one, and

	it returns information regarding clusters and prototypes.

[7]:

from pyminimax import fcluster_prototype

fcluster_prototype(Z_ext, t=1.8, criterion='distance')

[7]:

array([[1, 0],
 [1, 0],
 [1, 0],
 [2, 3],
 [2, 3],
 [2, 3],
 [3, 6],
 [3, 6],
 [3, 6],
 [4, 9],
 [4, 9],
 [4, 9]], dtype=int32)

The above result says that, cutting the dendrogram at 1.8 threshold, the data has 4 clusters. The first 3 points are in the first cluster and the prototype of this cluster is the 0th data point, the following 3 points are in the second cluster and the prototype of this cluster is the 3rd data point, and so on.

See Also

	scipy.cluster.hierarchy.complete [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.complete.html]

	scipy.cluster.hierarchy.dendrogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html]

	scipy.cluster.hierarchy.fcluster [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html]

	scipy.cluster.hierarchy.linkage [https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html]

	scipy.spatial.distance.pdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html]

API Reference

	
pyminimax.minimax(dists, return_prototype=False)

	Perform minimax-linkage clustering using nearest-neighbor chain algorithm.

	Parameters

	
	dists (ndarray) – The upper triangular of the distance matrix. The result of
scipy.spatial.distance.pdist is returned in this form.

	return_prototype (bool, default False) – whether to return prototypes.
When this is False, the returned linkage matrix Z has 4 columns, structured the same
as the return value of the scipy.cluster.hierarchy.linkage function.
When this is True, the returned linkage matrix has a 5th column which contains
the indices of the prototypes corresponding to each merge.

	Returns

	Z – A linkage matrix containing the hierarchical clustering. The first 4 columns has the
same structure as the return value of the scipy.cluster.hierarchy.linkage function.
See the documentation for more information on its structure. Depending on the value of
return_prototype there is an optional 5th columns.

	Return type

	ndarray

	
pyminimax.fcluster_prototype(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None)

	Form flat clusters from the hierarchical clustering defined by
the given linkage matrix, and the

	Parameters

	
	Z (ndarray) – The hierarchical clustering encoded with the matrix returned
by the minimax function.

	t (scalar) –
	For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
	this is the threshold to apply when forming flat clusters.

	For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
	this would be max number of clusters requested.

	criterion (str, optional) – The criterion to use in forming flat clusters. This can
be any of the following values:

	inconsistent :
	If a cluster node and all its
descendants have an inconsistent value less than or equal
to t, then all its leaf descendants belong to the
same flat cluster. When no non-singleton cluster meets
this criterion, every node is assigned to its own
cluster. (Default)

	distance :
	Forms flat clusters so that the original
observations in each flat cluster have no greater a
cophenetic distance than t.

	maxclust :
	Finds a minimum threshold r so that
the cophenetic distance between any two original
observations in the same flat cluster is no more than
r and no more than t flat clusters are formed.

	monocrit :
	Forms a flat cluster from a cluster node c
with index i when monocrit[j] <= t.
For example, to threshold on the maximum mean distance
as computed in the inconsistency matrix R with a
threshold of 0.8 do:

MR = maxRstat(Z, R, 3)
fcluster_prototype(Z, t=0.8, criterion='monocrit', monocrit=MR)

	maxclust_monocrit :
	Forms a flat cluster from a
non-singleton cluster node c when monocrit[i] <=
r for all cluster indices i below and including
c. r is minimized such that no more than t
flat clusters are formed. monocrit must be
monotonic. For example, to minimize the threshold t on
maximum inconsistency values so that no more than 3 flat
clusters are formed, do:

MI = maxinconsts(Z, R)
fcluster_prototype(Z, t=3, criterion='maxclust_monocrit', monocrit=MI)

	depth (int, optional) – The maximum depth to perform the inconsistency calculation.
It has no meaning for the other criteria. Default is 2.

	R (ndarray, optional) – The inconsistency matrix to use for the ‘inconsistent’
criterion. This matrix is computed if not provided.

	monocrit (ndarray, optional) – An array of length n-1. monocrit[i] is the
statistics upon which non-singleton i is thresholded. The
monocrit vector must be monotonic, i.e., given a node c with
index i, for all node indices j corresponding to nodes
below c, monocrit[i] >= monocrit[j].

	Returns

	fcluster_prototype – An array of shape (n, 2). T[i] is the flat cluster number to
which original observation i belongs, and the index of the prototype of this cluster.

	Return type

	ndarray

Index

 F
 | M

F

 	
 	fcluster_prototype() (in module pyminimax)

M

 	
 	minimax() (in module pyminimax)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyMinimax’s documentation!

 		
 Quick Start

 		
 Installation

 		
 Usage

 		
 Getting Prototypes

 		
 See Also

 		
 API Reference

_images/quick_start_13_0.png
1u

10

_images/quick_start_7_0.png
1u

10

_static/file.png

_static/minus.png

_static/plus.png

